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Abstract 

The effects of a dual force which appears in a consistent field theory of Newtonian 
gravitation are explored by a study of the motion of two bodies which interact with 
each other through the gravitational field. The equations of motion are solved exactly. 
Among the results obtained, we find that the present theory formulated in accordance 
with the Special Theory of Relativity leads to the same analytical result for the precession 
of the perihelion of the orbit as does Einstein's General Theory of Relativity. Another 
result is that classical particles are endowed with an intrinsic angular momentum of 
constant magnitude--a helicity of classical origin. Other results, such as the period of 
revolution, are similar to Kepler's law, except for relativistic corrections. A slight devia- 
tion from the planar orbit of classical theory results, and may be observable. This 
deviation is related to the magnitude of the precession of the perihelion of the orbit. 
The significance of these results for charged particles, viewed classically or quantum 
mechanically, are discussed. 

1. Introduction 

A previous publication (Schwebel, 1970a), developed a description for  
Newtonian  gravitation similar to Maxwell 's field theory o f  electromagnet- 
ism. The gravitational field was found to be longitudinal and to be pro-  
pagated with the velocity o f  light. At  the same time, a consistent formulat ion 
o f  a field theory for each phenomenon  gave rise to a mathematical  formalism 
which eliminated the difficulties usually associated with field theories, such 
as self-force, self-energy, etc. 

A feature o f  the consistent field theory which is absent f rom conventional  
theory is the appearance o f  an additional interaction term, which has been 
named a dual force. I t  is the purpose o f  the present paper  to explore the 
consequences due to the existence o f  the dual force. 

We will apply the theory to the gravitational interaction between two 
particles. It  will be found  that  the dual force will lead to the same analytical 
result for  the precession o f  the perihelion o f  the orbit  o f  one particle about  
the other  as is obtained f rom Einstein's General  Theory  o f  Relativity. 
Another  result is that  classical particles have an intrinsic spin or  helicity 
which is or thogonal  to its orbital angular momentum.  Moreoever,  the 
vector sum of  bo th  angular  momen ta  is a constant.  We will also find that  

7 87 



88 SOLOMON L. SCHWEBEL 

under the influence of the dual force the orbit of the gravitating particle 
will lie' on the surface of a cone whose vertex is occupied by the second 
particle. The magnitude of the semi-angle of the cone is directly related to 
the value for the precession of the perihelion of the orbit. 

Our first concern will be the equations of motion and their exact solution. 
This will be followed by calculations of the precession of the perihelion 
of the orbit and of its period of revolution. Finally, we discuss the results 
obtained and their significance. 

2. Equat ions  o f  M o t i o n  

We consider the gravitational interaction between two point particles. 
Since the universe of discourse is limited to just these particles, we take 
one of the particles as the origin of the coordinate system and consider the 
second particle orbiting about the first (SchwebeI, 1970b). Therefore, the 
second particle is in motion in the static field of the first particle. 

It follows, using the notation and results of Schwebel (1970a), that the 
equations of motion are 

~2 =/z2N~ + )t/x2(v2 •  ( c=  1) (2.1a) 

P2 ~ =/z2 vz'NI (2.1 b) 
where 

tz = ,V / ( -G)m ( G -  gravitational constan0; 
P2 = momentum vector of particle two; 

p2 ~ = time component of the four-momentum vector; 
NI = gravitational field due to particle one; 

= I~1 r/r 3 ; 
]/'2 V2 X N 1 = dualNewtonian force 

These equations include the dual Newtonian force which is weighted 
with a multiplicative constant, A. 

The field exerted by particle one on particle two is given by the expression 

N1 = tZl r/r 3 (2.2) 

where r is the relative displacement vector of particle two from particle 
one. Inserting this value for NI into equation (2.1a) and taking the cross- 
product of the latter with r, we obtain the result. 

r Xpz - -  ~ / ~ 1 / ~ 2 ( r / r )  = L = const. (2.3) 

The conservation of angular momentum which this relation expresses 
differs from the conventional law. There is an additional contribution to 
the orbital angular momentum term of an intrinsic angular momentum 
which arises from the dual Newtonian force. The intrinsic angular momen- 
tum is constant in magnitude and is directed along the displacement 
vector r. Note that if the momentum vector P2 is parallel to r, then the 
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total angular momentum of the system is the intrinsic angular momentum 
and we have the system displaying a classical type of helicity. 

If  equation (2.2) is inserted into equation (2.1b), we find the relation 
which is recognized as the conservation of energy of the system: 

p2 o +/zl ls = E = const. (2.4) 
r 

We see that the dual force does not explicitly contribute to the total energy. 

3. Determination o f  the Orbit 

If  we introduce a spherical coordinate system with the polar axis in the 
direction of L, then equation (2.3) becomes 

ym2 [--r 2 ~ sin ~ -- r 2 sin 0 cos 0 cos 4r -- A/~I/s sin 0 cos ~ -- 0 

ym2[r E cos ~0 - r 2 sin 0 cos 0 sin r162 - A/zl/z 2 sin 0 sin r = 0 

and 
7m2[r2 ~ sin 2 O] -- h/z I/z 2 cos 0 ---- L 

where L = IL] and y = {1 -v22} -1/2. We have introduced the relativistic 
values for P2 into equation (2.3) to obtain the above equations. 

Some elementary algebraic calculations enable us to obtain from these 
equations the following two relations. 

cos 0 = -h/z I Iz2/L (3.1) 
and 

ym2 r 2 6 = L (3.2) 

From equation (2.4), we obtain, using the relativistic value for p2 ~ the 
relation 

7m2 + tzl/z2 = E = const. (3.3) 
r 

Equation (3.1) states that 0 is a constant. If  ~ were equal to zero, then 
0 = 7r/2 and the orbit would lie in a plane perpendicular to the angular 
momentum vector L- - the  classical solution. We find that )t does not equal 
zero, though the right-hand side of equation (3.1) will be very small. For  
that reason, the orbit lies on the surface of a cone. The cone has particle 
one at its vertex, a semi-angle of 0 and an axis parallel to the vector L. 

Using the relation 

1 
V 2 2 = / : 2 + r 2 ~  2 + r 2 s i n 2 0 ~  2 = 1 y2 

in conjunction with equations (3.1), (3.2) and (3.3), we find 

f = +{(Er - 1~1 ~2) 2 - -  m2 2 r 2 - -  L 2 s in  2 0 } l / 2 / l E r  - / A  1/z2[ (3.4) 
and 

4 = L/(ym2 r 2) (3.5) 
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The last two equations yield the result 

de dr 
-t--~ - r{(Er - tzl tz2) 2 - m2 2 r 2 - L 2 sin 2 0} 1/2 

Integration yields 

- = A[1 + Bsin/3(~ - ~0)] (3.6) 
r 

where the choice of sign is unimportant (since it merely denotes a choice 
of phase), and 

( cOS20 ) 
A = (/~/~2 E)/(/~I 2/~22 - L2 sin2 0) = -Ecos  O/L~ - - f f  sin 2 0 

B = {m22 + ~2 tan 20(E 2 _ m22)}l/2/E 

/3 = {sin 2 0 -- (cos 2 0/A2)} 1/2 

4. The Period and the Precession o f  the Perihelion o f  the Orbit 

The advance of the perihelion of the orbit of the gravitating particle is 
obtained from the argument of the trigonometric function in equation 
(3.6). For, successive minima of the distance between the two particles 
occur when the change in phase is 2zr, i.e., when 

A/3(  _ = 2 .  

Therefore the advance of the perihelion, 3, is given by 

2~r /1 

Since/3 < 1, it follows that the perihelion advances as the particle pursues 
its orbit. Using equation (3.1), the value for/3 and the information that 
cos 0 is very small, we find to a good approximation that 

3 = ~r (1 d- ~2) ,~2/~12,22/L 2 (4.1) 

I f  ~2 ~ 5, then 3 is precisely the result obtained from Einstein's General 
Theory of Relativity. 

The calculation of the period of the orbit proceeds from equations 
(3.2) and (3.6). The result is that 

T = 1 - B 2 [~l [-~2 A L /3A2(  [ ~ B2)112 
which simplifies if we introduce the 'semi-major' axis, a, defined by 

a-- �89 + r(min.)) 
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Using equation (3.6) and the definitions for A, B, and/3, we can express 
the period, T, as a function of the 'semi-major' axis and obtain 

2 r r a  3/2 (m2] 3/2 
T = ~ \ ~ ]  (4.2) 

The 'semi-major' axis, a, can be expressed in physical terms 

Grnl m2 E 
a = m 2  2 _ E 2  (4.3) 

Another form for equation (4.1) is 

247r3 a2 (mE2)4 
8 = cZ T - ~  -- ~B 2) - -  ; (A2 = 5) (4.4) 

Equations (4.1), (4.2), (4.3) and (4.4) are for bound orbits for which 
E 2 -  m2 2 c4< 0. We have reintroduced e into the last equation to make 
comparison easier with results found elsewhere. 

5. Discussion 

The inclusion of the dual force in the equations of motion for two 
particles has led to a number of results. First, as equation (2.3) displays, 
there is an intrinsic angular momentum about the direction of the dis- 
placement of one particle from the other--a sort of classical helicity. 
Secondly, we find that the advance of the perihelion of the orbit of one 
particle about the other is given by a relation, equation (4. I), which differs 
from that obtained from Einstein's General Theory of Relativity only by 
a multiplicative constant. The value of this constant depends soMy on the 
constant A which was introduced as a measure of the role of the dual 
force relative to the conventional Newtonian gravitational force. Thirdly, 
the trajectory of one particle in motion about a second particle differs 
qualitatively though practically negligibly from the classical Kepler orbits. 

Because A is non-zero, we find that the trajectory of the particle in motion 
lies on the surface of a cone with the second particle at its apex. The mag- 
nitude of the semi-angle of the cone is so large--approximately 90~ 
the cone is practically indistinguishable from a plane. Nevertheless, it may 
be possible to observe the departure of the orbit of the particle, say the 
earth, from planar orbit predicted by conventional theory. According to 
the above results, the earth's orbit should lie on a cone with the sun at its 
apex. If  the background of the stars is photographed from the earth in the 
direction of the sun-earth axis, and if two such photographs taken at 
azimuths 180 ~ apart are compared, then there should be a shift in the 
positions of the stars. The angular shift should be equal to twice the comple- 
ment of the semi-angle of the cone, an exceedingly small angle to measure. 
Another consequence to be expected is that those planets for which the 
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advance of their perihelions are large should have orbits that lie farther 
from the planar orbit predicted by classical Newtonian theory. 

Both the above effects are small and the observation problem is com- 
plicated by the interactions of the other planets with the sun-earth system. 
The above calculations have not included such perturbations. 

In classical theory, equation (4.2) is amended by the introduction of the 
reduced mass of the system. The procedure effectively replaces ml with 
ml + m2. Of course, the factor (m2/E) 3/2 is relativistic in origin and does 
not appear in the classical result. To obtain the corresponding correction 
for the relativistic result obtained, equation (4.2), we must resort to re- 
lational mechanics (Schwebel, 1970b) in which the two-particle system is 
treated as a physical entity. Using the form of Newton's equations derived 
there, we find that in equation (4.2) we must replace m~ with m~ + m2 
and in the factor (m2/E), 3/2m2 must be replaced by the reduced mass 
o - ( m ~ m 2 ) / ( m i  +m2). Similar changes occur throughout; for example, 
equation (4.3) undergoes the change 

a = ( G m l  m2E)/ (a  2 - E 2) 

and equation (4.4) becomes 

24~r 3 a 2 (O'r 4 

3 = e2 T2(1 _ B2 ) \ E ] 

The enumerated consequences given above of the effects of the dual 
force are corroborative of the reality of such a force as well as indicative 
of the value of the gravitational field theory of which it forms an integral 
part. That field theory was developed along with electromagnetic field 
theory and we can anticipate similar results for the interaction of two 
electrically charged particles. Thus, indeed, it is a straightforward pro- 
cedure to show that an intrinsic angular momentum proportional to 
e2/c will appear as well as the other effects which were found for two mass 
particles. In particular, for charged particles, the quantum mechanical 
transcript of equation (2.3) with its promise of accounting for the anomalous 
magnetic moment of the particles is an intriguing application which will 
be the subject of another paper. 
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